
POPULATION KINETICS OF ROTATIONAL LEVELS 

IN A FREE NITROGEN JET 

P. A. Skovorodko and R. G. Sharafutdinov UDC 533.6.011.8 

Rota t iona l - t rans la t iona l  relaxation accompanying supersonic  expansion occurs  with the breakdown of the 
Boltzmann distribution over  the rotational levels. This has been established experimental ly with the help of 
various methods: electron beam [1-3], glow discharge [4], magnetic resonance in a molecular  beam [5], and 
laser  radiation [6]. 

The theoret ical  descr ipt ion of the process  of rotational relaxation must  be based on the solution of Boltz-  
mann's  kinetic equation for a gas with internal degrees of f reedom [7], but this apprGach is not used in pract ical  
calculations because of well-known difficulties in solving this equation, as welI as due to the absence of infor-  
mation on c ross  sections for R - R  and R - T  processes .  Up to the present  t ime,  in o rde r  to descr ibe  the popu- 
lation kinetics of rotational levels,  only a hydrodynamic approach has been used, consist ing of solving the sys -  
tern of kinetic equations for the population densities and, in addition, in work along these lines [8-10], the pro-  
cess  of rotational relaxation was examined in a fixed field of gasdynamic parameters  (linear problem). The 
values of the rotational relaxation rate  constants ,  necessa ry  for the hydrodynamic method, were  found by solv-  
ing the collision dynamics problem for H2 + H2 [8] and N 2 + N 2 [10] or  the values were  chosen intuitively [9]. 
In [10], wherein the rotational relaxation of nitrogen in a freely expanding jet was examined, all coll isional 
t ransi t ions were neglected, except the two-quantum transi t ions Ak = "-2 (i.e., the minimum possible taking 
into account or tho-  and paramodifications of nitrogen). Comparison with experiment,  ca r r i ed  out in [10], r e -  
vealed the d isagreement  between calculations and data f rom electron beam measurements .  

The purpose of this paper is to descr ibe  theoret ical ly the results  of electron beam measurements  of the 
population densities of rotational levels of nitrogen molecules in a jet flowing into a vacuum. 

1. Experiment .  The experimental  data, used in the present, paper,  were  obtained on a low-density gas -  
dynamic setup at the Institute of Thermal  Physics  of the Siberian Branch of the Academy of Sciences of the 
USSR (testing unit VS-4) [11], equipped with electron beam diagnostics [12]. Axisymmetr ica l  sonic nozzles 
served as gas sources .  The stagnation tempera ture  in all experiments was room tempera ture  (290-300~ The 
p ressu re  level in the background gas did not exceed 0.25 Pa, so that the effect of molecules penetrating f rom 
the background on the measurements  was negligibly smal l  and the flow in the core  of the jet was the same as 
for flow into a vacuum [3]. The experiments consisted of measurements  of the f i rs t  negative band sys t em in 
nitrogen, excited by an electron beam, along the axis of the jet. The results  of the measurements  are  pre-  
sented in detail in [13]. 

2. Calculation of Population Densities of Rotational Levels. In the hydrodynamic approximation, the sys- 
tem of kinetic equations for the population densities of molecular rotational levels has the following form [8]: 

dn i 
dr" -t- n iVu  = n 2 Z [N~N~Kt ,~r  - -  NiNjK~j ,Z ,m] ,  (2.1) 

~,l,m 

where u is the velocity of the gas; n i is the number density of molecules in i - th  rotat ional  state; n = ~n~ is the 
{ 

number density of gas molecules;  N i = n i / n  is the relat ive population density of the i - th  rotational level; 
Kl m i ~ and K i ~ I m are the microscopic  rate constants [14] for binary collisions of molecules (i,)) ~ (l, m) 
with rotational quantum numbers i, j, l, m. In what follows, we assume that the rate  constant Ki,j,/, m does 
not depend on the values of j and m and equals zero  when j ~ m, i .e. ,  one of the colliding molecules is a s t r uc -  
ture less  particle.  Taking into account transi t ions with j ~ m ( R - R  transi t ions) ,  as done in [9], showed that 
they play a relat ively smal l  role.  In this case ,  for one-dimensional  s ta t ionary flow in a s t r e a m  tube, the sys -  
tern of kinetic equations (2.1) takes the fo rm 
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(2.2) 

where x is the distance along the s t r e a m  tube. Here,  the indices i and l are  replaced by the standard index k 
for  a homonuelear diatomie molecule. Due to the fact that collisional transit ions between or tho-  and paramodi-  
fications of nitrogen are  s trongly forbidden [15], only transi t ions with even values of Ak are allowed. For  this 
reason,  the sys tem of Eqs. (2.2) decomposes into two uncoupled sys tems for the even and odd level numbers k. 
For  nitrogen, the relative nuclear degeneracies  of the rotational levels g(k) equal 2 / 3  and 1 / 3 ,  respect ively ,  
for  or tho-  (k even) and para-  (k odd) modifications [15]. In agreement  with the principle of detailed balance, 
we will write the sys tem of Eqs. (2.2) in the fo rm 

(2.3) 

where 

( 2 ~ - { -  i )  . . 

represents  the rat io of population densities for equilibrium (Boltzmann) distribution of molecules over ro ta -  
tional levels with the tempera ture  equal to the translational  tempera ture  of the gas T t. Here,  | = 2.878~ is 
the rotational constant for nitrogen. 

The sys tem of Eqs. (2.3) was used to descr ibe  the population kinetics of the rotational levels of nitrogen 
molecules on the axis of a f ree  jet with an ax isymmetr ica l  sonic nozzle. The problem was solved in a l inear 
formulation. The functions u(x), n(x) and Tt(x) were  found by solving numerical ly  the sys t em of gasdynamic 
equations: 

puA = const = G, 3,5RT t + u~/2 = const, (2.4) 

pudu + dp = 0 ,  p = p R T t ,  

where R = k B / m  is the gas constant; p is the pressure ;  p = mn is the density; A is the area  of the s t r eam tube; 
k B is Boltzmann's  constant; and, m is the mass of a molecule. The function A(x) was tabulated based on a two- 
dimensional calculation of the flow of a perfect  gas with a rat io of specific heat capacit ies T = 1.4 [16]. After 
putting the sys tem of Eqs. (2.3) into dimensionless form,  it can be shown that for  a given set of rate constants 
the functions Nk(X/d.) will be the same for constant values of the two defining parameters :  the stagnation tem-  
pera ture  T O and the product of the p res su re  in the fo r e - chamber  P0 and the d iameter  of the nozzle edge d , .  The 
calculations were  car r ied  out for T o = 290-300~ 13.3 -< pod, [Pa.  mm] ~ 104. It was assumed that in the sub- 
sonic part  of the nozzle equilibrium exists between the translational  and rotational degrees of f reedom,  while 
in the nozzle c ross  section Mach's  number equals unity according to the equilibrium velocity of sound. The 
calculation was s tar ted direct ly  f rom the c ross  section of the nozzle, where the equilibrium distribution of 
molecules over the rotational level was given: 

(2k -~ i) g (k) exp [-- k (k ~- i) O/T.1 (2.5) 
Nk = ~_~(2k-{- i) g(k) exp[--k(k+,i) e/r , l  ' 

k 

where T .  is the tempera ture  at the edge of the nozzle and, in addition, T,  = 2T0/(T + 1). TWenty-eight ro ta-  
tional levels (from the ground state to the twenty-seventh) were  taken into account; in accordance with this, 
the rate  constants Kk+Ak,k in the sys t em of Eqs. (2.3) were  assumed to equal zero  for the values k + Ak -> 29. 

The following procedure was used for solving the sys tem of Eqs. (2.3) numerical ly.  F i r s t ,  the gas-  
dynamic parameters  n2, u2, Tt2 were  calculated at the point x 2 = xl + h (h is the computational step along the 
axis of the jet) by solving the sys t em of Eqs. (2.4). The equation of motion was approximated in this case as 
follows [16]: 

AI'J-A2 ( P 2 - - P l )  : 0,  G (U2 -- Ul) -~ 2 

after which the sys tem (2.4) can be reduced to a quadratic equation for Uzo F r o m  the two values of the velocity,  
the solution corresponding to supersonic  flow was chosen. Here and in what follows, the index 1 indicates 
known quantities at the point x~ and the index 2 indicates the quantities sought at the point x 2. Then, the s y s -  
tem of Eqs. (2.3), which was approximated with the help of the following second-o rde r  implicit  difference 
scheme~ was solved: 
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r n 2  Nh,--/V~I i [n]  ~ IV(N1 ' Tt;I_E_~7.~F(N~ ' Tt,)] (2.6) 

where F(N, T t) denotes the term in braces in Eqs. (2.3), whileN indicates the population density vector. Since 

the quantity F depends linearly on the population densities, the system of difference equations (2.6) can be re- 

duced to a system of algebraic equations for the unknown population densities at the point x 2 (more precisely, 

to two systems for even and odd levels). These systems of equations were solved with the help of an appro- 

priate standard procedure. The computational scheme described above ensures a stable calculation for any 

values of the parameter pod.. 

in order to increase the accuracy, the computed results were compared with experimental results for the 

magnitudes of line intensities of the first negative band system in nitrogen, which were calculated using the 

model in [17] from the known values of the population densities: 

�9 k ' + i  ~ k' 

3. Comparison of Calculation with Experiment. In order to compare the calculation with experiment, it 

is necessary to know the rate constant for rotational relaxation. Up to now, for collisions between nitrogen 
molecules, there is information in the literature only on the effective probabilities for two-quanta transitions 
(Ak = • [18]: 

a~ i93 l (k-}-2)(k-~-3)(21~3) ~ [ (6,882 (2k-~-3))2/8{ exn [0 (2k_F 3)]~2 P k - ' ~ = - - =  exp - - 3  
" 1/5 21 +5 jr' 

where G i and g e are the total effective cross sections for inelastic and elastic collisions, respectively; c~ is 

a parameter of the potential. The transformation from effective probabilities to rate constants can be made 
according to the equation 

K~+2,k = cP~+~,~ C~g ~ (3.1) 

w h e r e  v = (16k B Tt/r~m) ~/2 is the a ve r a ge  ve loc i ty  of r e l a t ive  motion;  c = O-e/~g; Gg is the gas -k ine t i c  c r o s s  
sec t ion ,  which  was  ca lcu la ted  us ing Sazer lar ,  d ' s  equation: 

~g = ~(3,22)~(i ~- i05/Tt), t0 -16 cm 2. (3.2) 

The f r e e  p a r a m e t e r s  a and c w e r e  chosen  by c o m p a r i n g  ca lcu la t ions  with expe r imen ta l  r e s u l t s ,  obtained for  
pod, = 8 - 103 P a .  m m  and T O - 295~ These  expe r imen ta l  condi t ions  c o r r e s p o n d  to an ins igni f icant  effect  of 
condensa t ion  on the populat ion dens i ty  of levels  [19], but at the s a m e  t ime ,  the deviat ions  of  the dens i ty  and 
t r ans l a t i ona l  t e m p e r a t u r e  f r o m  the i r  i s en t rop ie  values  due to the effect  of re laxa t ion  p r o c e s s e s  and v i s c o s i t y  
in the nozzle [20] are also not large. The parameters a and c were adjusted so that a = 3 and c = i0, for which 

the calculation and experiment agree satisfactorily, as is evident from Fig. I, which shows the behavior of the 

intensities of rotational lines I k, for odd levels with k' = 3 to k' = II. The dots in Fig. 1 indicate experimental 

data (5 is for d, - 5.12 mm and 6 is for d. - 15 ram), while the lines indicate the computed values. Curve 1 

shows the values of I k, with a Boitzmann distribution in the XIEv = 0 state with translational temperature Tt; 

curve 2 shows the theoretical calculation with rate constants given by Eq. (3.1), which in what follows we will 

refer to as the two-quanta model of rotational relaxation. The same figure presents the computed data for the 

first and second multiquantum models (curves 3 and 4, respectively). These models will be described below. 

As a comparison, shown in Fig. 2 (the notation in Fig. 2 is the same as in Fig. i), between calculations 

and experiment shows, for x/d, = 5 and T O = 290~ with Pod. > 8 �9 103 Pa. ram, the theoretical data on two- 
quanta model are much closer to the values for equilibrium flow (in Fig. 2, they are shown by the horizontal 

segments of the dashed lines) than experiment~ In addition, this difference increases with increasing rotational 
quantum number and can be ascribed to the effects of nonequilibrium condensation [19]. 

The disagreement between computed and experimental data is also observed for smaller values of Pod,, 
i.e., for conditions when the effects of condensation in the flow are insignificant, at least, for most of the ro- 
tational levels. The disagreement indicated increases with increasing Pod,, since the calculation using the two- 

quantum model predicts a slower relaxation rate for the process than is observed experimentally. 

The problem of finding the rate constants from experimental data on the population densities of the 
levels for the two-quanta transition model is a problem involving a number of unknown constants Kk+2, k equal 

to the number of equations [Eqs. (2.3)]. For this reason, the lack of correspondence between the calculation 

using the two-quanta transition model and experiment demonstrated in Fig. 2, except for the experiment with 
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pod. = 8 �9 103 P a .  m m ,  i nd i ca t e s  the n e c e s s i t y  of taking into account  t r a n s i t i o n s  with Ak > 2. This is a lso  i nd i -  
ca ted  by q u a n t u m  m e c h a n i c a l  c a l cu l a t i ons  of the c r o s s  s ec t ions  of i n e l a s t i c  N 2 + Ar co l l i s i ons  [21]. The re  is 
as ye t  no i n f o r m a t i o n  in the l i t e r a t u r e  on the r a t e  cons t an t s  of r o t a t i ona l  r e l axa t i on  with N 2 + N 2 c o l l i s i o n s ,  
whi le  the s y s t e m  of k ine t ic  equat ions  (2.3) cannot  be so lved un ique ly  for  the r a t e  cons tan t s  of m u l t i q u a n t u m  
t r a n s i t i o n s ,  as can  be done for  models  invo lv ing  two-quan t a  t r a n s i t i o n s .  

I n fo rma t ion  theory  was used  to se t  the m u l t i q u a n t u m  ra t e  cons tan t s  [22]. The equat ions  for  the r a t e  c o n -  
s t an t s  w e r e  used  in the s a m e  f o r m  as for  the c r o s s  s ec t ions  in this  theory .  In the nota t ion  of the paper  c i ted ,  
the equat ion for  c a l cu l a t i ng  the deac t iva t ion  cons tan t s  has  the  f o r ~  

where 

�9 (k, Ak) (2k + i) 
Kh+Ah,k = Kh+Ah,h+hh-~ rp (k, 2) 2 (k'+- hk) --  3 ~ (3.3) 

Ek+A:: - -  Ek~ 
* (k, Ak) = (T  t + Ek+~,~ - -  Z~) 1:~ exp - -  c 1 Th--- ~ g,=-+-~). 

Here ,  cl is an ad jus tab le  f ac to r ,  whi le  E i = i(i + 1)| The two-quan ta  t r a n s i t i o n  c ons t a n t s  w e r e  ca l cu la t ed  u s ing  
Eq. (3.1) wi th  o~ = 3. The bes t  a g r e e m e n t  be tween theo re t i ca l  and e x p e r i m e n t a l  da ta  is obta ined with ct = 4. In 
F igs .  1 and 2, ca l cu la t ions  acco rd ing  to this  model  of ro t a t i ona l  r e l a x a t i o n  (f i rs t  mu l t iquan tum)  a re  ind ica ted  
by the n u m b e r  3. In c o n t r a s t  to the two-quan ta  t r a n s i t i o n  mode l ,  this model  d e s c r i b e s  the e x p e r i m e n t a l  da ta  
in  the r ange  pod, = 103-8 �9 103 P a .  ram. 

The s a m e  s a t i s f a c t o r y  d e s c r i p t i o n  of the e x p e r i m e n t s  was a l so  obta ined  for  ano the r  se t  of r a t e  cons t an t s  
for  r o t a t i ona l  r e l axa t i on ,  in  p a r t i c u l a r ,  for  deac t iva t ion  c o n s t a n t s ,  g iven in the f o r m  [23] 

/ Ek+Ah - Eh~ 
 0xp 7; ), (3.4) 

with  ad jus t ab le  p a r a m e t e r s  B and c x. We wi l l  r e f e r  to this  mode l  as the second  m u l t i q u a n t u m  model .  By f i t t ing ,  
the va lues  B = 7 . 3 9 . 1 0  -11 c m  a �9 sec  -1 and c 2 = 0.35 w e r e  ob ta ined ,  for  which  the e x p e r i m e n t a l  da ta ,  p r e sen t ed  

in Fig.  2 for  pod. < 8 �9 10 ~ P a .  ram,  a r e  d e s c r i b e d  by this  model  jus t  as wel l  (curve 4) as by ca l cu l a t i ons  us ing  
the f i r s t  m u l t i q u a n t u m  model .  A s i m i l a r  d e s c r i p t i o n  of the e x p e r i m e n t s  is a lso  obta ined  for  o ther  va lues  of 
x / d , .  

F i g u r e  3 gives  the computed  d i s t r i b u t i o n s  of populat ion de ns i t i e s  of ro t a t i ona l  l eve l s  for  x / d ,  = 5 and 
T O = 300~ for  d i f f e ren t  va lues  of Pod. in  the coo rd ina t e s  In (Nk/N0(2k + 1)) -- k(k + 1). In t hese  c o o r d i n a t e s ,  
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the Boltzmann distribution with temperature Tr is a straight line with the tangent of the angle of inclination 
equal to -| r. The same figure shows the distributions corresponding to the equilibrium (pod, = ~o) and 
"frozen" (pod. = 0) flows. In Fig. 3, the population densities of the odd levels, in accordance with the statisti- 

cal weights of ortho- and paramodifieations, are increased by a factor of 2. It is evident that for all pod, the 
population densities of even and odd levels are described by single smooth functions of k(k + i). The distribu- 
tions evolve from equilibrium to "frozen" through a sequence of non-Boltzmann distributions, i.e., distribu- 
tions for which a rotational temperature cannot be introduced. This evolution of the distributions, which is 

observed for any x/d., is typical for experiments with free jets [3]. 

4. Relaxation of Rotational Levels. In order to solve a wide range of gasdynamic problems, instead of 
detailed information contained in the molecular rotational distribution function, it is enough to know the relax- 
ation characteristics of the rotational energy E r ---- ~ Ok(k ~- i) N~. We will examine the problem of the appli- 

h 
cability of the relaxation equation 

d E  r d E  r E r (T~) - -  E r ( 4 . 1 )  

d t  - -  U" -~x  " ~ r -  

for describing the computed results for E r obtained above. In Eq. (4.1), T r iS the relaxation time. Based on the 
computed functions Nk(x) and, therefore, knowing the functions Er(x), for each point x we computed the quan- 
tity T r from Eq. (4.1). The corresponding results are presented in Fig. 4 for i0 values of pod, and are denoted 
by the numbers i-I0 for the set of rate constants (3.4) in the form of the functions m-r(Tt). The number 11 

indicates the function n~-/(Tt), obtained directly from the system of Eqs. (2.3) for the case of an infinitely 
small difference between the translational and rotational temperatures (T r - T = e ~ 0) by expanding the right 
sides of Eqs. (2.3) in powers of s and taking into account terms ~s. In this case, Eq. (4.1) with T r = ~-/can be 
obtained for E r. A similar procedure for calculating T/r was used previously in [24] for a two-quanta transition 
model. As is evident from Fig. 4, for each value of Tt, there is an appreciable increase in the quantity nT r with 
decreasing pod., i.e., with an increase in the deviation from equilibrium between rotational and translational 

degrees of freedom. This indicates that the quantity nT r depends on the distribution of molecules over rota- 
tional levels and, therefore, Eq. (4.1), strictly speaking, cannot describe E r as accurately as the system of 
kinetic equations (2.3). The nature of the dependence of m- r on the distribution of population densities is de- 
termined by the set of rate constants for rotational relaxation and by the gasdynamic process. We note in this 
connection that in [9] a special set of constants is indicated for which the equivalent relaxation time does not 
depend on the distribution of molecules over rotational levels. However, in general, such a dependence exists 
and, therefore, the relaxation equation (4.1) can be used for describing approximately the relaxation of rota- 
tional energy only in a limited range of defining parameters (Pod,, T 0, x/d.). The number 12 in Fig. 4 indi- 
cates the dependence of the product of the gas density and the average time between collisions of molecules 
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t~Tt :=  " ~  kBT ~ Og' 

where Crg is given by Eq. (3.2). As is evident, in the tempera ture  interval  10-100~ the quantity z r = T r/~-t  
increases  with increas ing T t f rom 2-3 at T t = 100~ to 10-100 and higher at T t = 10~ 

Figure  5 shows the results  of measurements  of Er,  ca r r i ed  out using different methods: according to 
the energy balance in the molecular  beam [25-27], points 1, 2, and 4, respect ively;  electron beam in a molec-  
ular  beam [28], points 3. Point 6-8 indicate the results  in [13]: 6) x / d ,  = 66.1, T o = 290~ 7) x / d .  = 66.1, 
T o = 295~ 8) x / d ,  = 38, T O = 295~ The experimental  data in general  agree,  although the electron beam 
measurements  give smal le r  values of E r than the molecular  beam measurements .  The experimental  results  
[13] agree well with data in [28], where electron beam measurements  were ca r r i ed  out in a molecular  beam 
separated out f rom the jet, i .e. ,  for  densities much lower than for  measurements  in a jet and, therefore ,  for 
a smal le r  effect of secondary  electrons.  The agreement  between the data on E r provides an additional basis,  
to that presented in [13], for  neglecting the effect of secondary electrons.  Figure  5 also shows the computed 
functions Er(P0d,) at the point x / d .  = 10O (the quantity E r in the range of pod. examined is "frozen" at distances 
x / d .  < 30-40). Curve 5 was obtained f rom a solution of the sys tem of kinetic equations (2.3) with constants 
(3.4); curve 9 is resul t  of asolution of Eq. (4.1) with relaxation time T/r . As can be seen, the kinetic calcula-  
tion agrees sa t isfactor i ly  with experiment,  while the relaxation equation leads to results  that are lower (by 20 
to 30%). 

The ambiguity of the rate constants for rotational relaxation, demonstrated above, found f rom the resul ts  
of measurements of population densities of levels, has a fundamental significance, reflecting the improper 

nature of the corresponding inverse problem. However, whatever the true values of the rate constants are, 

the basic characteristics of rotational relaxation in a free jet of a molecular gas remain the same. 

i. Supersonic expansion of a gas into a vacuum is accompanied by breakdown of the Boltzmann distribu- 

tion of the rotational level population densities. 

2. IV[ultiquantum R-T transitions (Ak = +4, • and so on) play an important role in the kinetics of ro- 

tational relaxation. 

3. The relaxation time for rotational energy depends on the distribution of molecules over rotational 

levels and, for this reason, the quantity Zr obtained by analyzing the experiments within the scope of the re- 

laxation equation (4.1) is not a physical characteristic of the gas. This circumstance could be the reason for 

the large spread in the values of z r in the literature [26], even those obtained using the same method. 
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