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Rotational —translational relaxation accompanying supersonic expansion occurs with the breakdown of the
Boltzmann distribution over the rotational levels. This has been established experimentally with the help of
various methods: electron beam [1-3], glow discharge [4], magnetic resonance in a molecular beam [5], and
laser radiation [6].

The theoretical description of the process of rotational relaxation must be based on the solution of Boltz-
mann's kinetic equation for a gas with internal degrees of freedom [7], but this approach is not used in practical
calculations because of well-known difficulties in solving this equation, as well as due to the absence of infor-
mation on cross sections for R—R and R— T processes. Up fo the present time, in order to describe the popu-
lation kinetics of rotational levels, only a hydrodynamic approach has been used, consisting of solving the sys-
tem of kinetic equations for the population densities and, in addition, in work along these lines {8-10], the pro-
cess of rotational relaxation was examined in a fixed field of gasdynamic parameters (linear problem). The
values of the rotational relaxation rate constants, necessary for the hydrodynamic method, were found by solv-
ing the collision dynamics problem for Hy + Hy [8] and N, + N, [10] or the values were chosen intuitively [9].

In [10], wherein the rotational relaxation of nitrogen in a freely expanding jet was examined, all collisional
transitions were neglected, except the two-quantum transitions Ak = +2 (i,e., the minimum possible taking
into account ortho- and paramodifications of nitrogen). Comparison with experiment, carried out in [10], re~
vealed the disagreement between calculations and data from electron beam measurements.

The purpose of this paper is to describe theoretically the results of electron beam measurements of the
population densities of rotafional levels of nitrogen molecules in a jef flowing into a vacuum.

1. Experiment. The experimental data, used in the present paper, were obtained on a low~density gas-
dynamic setup at the Institute of Thermal Physics of the Siberian Branch of the Academy of Sciences of the
USSR (testing unit VS-4) [11], equipped with electron beam diagnostics [12]. Axisymmetrical sonic nozzles
served as gas sources. The stagnation temperature in all experiments was room temperature 290-300°K). The
pressure level in the background gas did not exceed 0.25 Pa, so that the effect of molecules penetrating from
the background on the measurements was negligibly small and the flow in the core of the jet was the same as
for flow into a vacuum [3]. The experiments consisted of measurements of the first negative band system in
nitrogen, excited by an electron beam, along the axis of the jet. The results of the measurements are pre-
sented in detail in [13],

2. Calculation of Population Densities of Rotational Levels, In the hydrodynamic approximation, the sys-
tem of kinetic equations for the population densities of molecular rotational levels has the following form [8]:
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where u is the velocity of the gas; nj is the number density of molecules in i-th rotational state; n == Zni is the

number density of gas molecules; Nj = n; /n is the relative population density of the i-th rotational level;
Kl,m,i,j and Ki,j,l,m are the microscopic rate constants [14] for binary collisions of molecules (@, j) = (, m)
with rotational quantum numbers i, j, I, m. In what follows, we assume that the rate constant Ki,j,l,m does
not depend on the values of j and m and equals zero when j = m, i.e., one of the colliding molecules is a struc-
tureless particle. Taking into account transitions with j # m (R—R transitions), as done in [9], showed that
they play a relatively small role. In this case, for one-dimensional stationary flow in a stream tube, the sys-
tem of kinetic equations (2.1) takes the form
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where x is the distance along the stream tube. Here, the indices i and [ are replaced by the standard index k
for a homonuclear diatomic molecule, Due to the fact that collisional transitions between ortho- and paramodi-
fications of nitrogen are strongly forbidden [15], only transitions with even values of Ak are allowed. For this
reason, the system of Egs, (2.2) decomposes info two uncoupled systems for the even and odd level numbers k.
For nitrogen, the relative nuclear degeneracies of the rotational levels g(k) equal 2/3 and 1/3, respectively,
for ortho- (k even) and para- (k odd) modifications [15]. In agreement with the principle of detailed balance,
we will write the system of Eqgs. (2.2) in the form
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represents the ratio of population densities for equilibrium (Boltzmann) distribution of molecules over rota-
tional levels with the temperature equal to the translational temperature of the gas Tt. Here, @ = 2.878°K is
the rotational constant for nitrogen.

The system of Eqs. (2.3) was used to describe the population kinetics of the rotational levels of nitrogen
molecules on the axis of a free jet with an axisymmetrical sonic nozzle, The problem was solved in a linear
formulation. The functions u), n(x) and T¢{x) were found by solving numerically the system of gasdynamic
equations:
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where R = kB/m is the gas constant; p is the pressure; p = mn is the density; A is the area of the stream tube;
kB is Bolftzmann's constant; and, m is the mass of a molecule. The function A(x) was tabulated based on a two-~
dimensional calculation of the flow of a perfect gas with a ratio of specific heat capacities v = 1.4 [16]. After
putting the system of Egs. (2.3) into dimensionless form, it can be shown that for a given set of rate constants
the functions N (x /dx) will be the same for constant values of the two defining parameters: the stagnation tem-
perature T, and the product of the pressure in the fore-chamber p, and the diameter of the nozzle edge dyx. The
calculations were carried out for T, = 290-300°K, 13.3 = pyd« [Pa- mm] = 10%. It was assumed that in the sub-
sonic part of the nozzle equilibrium exists between the translational and rotational degrees of freedom, while
in the nozzle cross section Mach's number equals unity according to the equilibriam velocity of sound. The
calculation was started directly from the cross section of the nozzle, where the equilibrium distribution of
molecules over the rotational level was given:
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where Ty is the temperature at the edge of the nozzle and, in addition, Ty = 2T,/ (y + 1). Twenty-eight rota-
tional levels (from the ground state to the twenty-seventh) were taken into account; in accordance with this,
the rate constants Kk+Ak,k in the system of Eqgs. {2.3) were assumed to equal zero for the values k + Ak = 29,

Ny =

The following procedure was used for solving the system of Eqgs. (2.3) numerically. First, the gas-
dynamic parameters n,y, uy, Tt were calculated at the point x, = x; + h (h is the computational step along the
axis of the jet) by solving the system of Egs. (2.4). The equation of motion was approximated in this case as
follows [16]:
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after which the system (2.4) can be reduced to a quadratic equation for u,. From the two values of the velocity,
the solution corresponding to supersonic flow was chosen. Here and in what follows, the index 1 indicates
known quantities at the point x; and the index 2 indicates the quantities sought at the point x5, Then, the sys-
tem of Egs. (2.3), which was approximated with the help of the following second-~order implicit difference
scheme, was solved:
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where F(N, Tt} denotes the term in braces in Eqgs. (2.3}, whileN indicates the population density vector. Since
the quantity ¥ depends linearly on the population densities, the system of difference equations (2.6) can be re-
duced to a system of algebraic equations for the unknown population densities at the point x, (more precisely,
to two systems for even and odd levels), These systems of equations were solved with the help of an appro-
priate standard procedure. The computational scheme described above ensures a stable caleculation for any
values of the parameter pydx.

In order to increase the accuracy, the computed results were compared with experimental results for the
magnitudes of line intensities of the first negative band system in nitrogen, which were calculated using the
model in [17] from the known values of the population densities:
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3. Comparison of Calculation with Experiment, In order to compare the calculation with experiment, it
is necessary to know the rate constant for rotational relaxation. Up to now, for collisions between nitrogen
molecules, there is information in the literature only on the effective probabilities for two-quanta transitions
(Ak = £2) [18]:
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where o and 0, are the total effective cross sections for inelastic and elastic collisions, respectively; o is
a parameter of the potential, The transformation from effective probabilities to rate constants can be made
according to the eguation

Kiptop = cPpigy Ug;z 3.1)

where ¥ = (16kp Ti/mm)/? is the average velocity of relative motion; ¢ = 0e/0g; 0g is the gas~kinetic cross
section, which was calculated using Sazerland's equation:

0p = n(3,220%(1 - 103/7;)-10-1 cm?, (3.2)

The free parameters & and ¢ were chosen by comparing calculations with experimental results, obtained for
pods = 8-10° Pa- mm and Ty = 285°K. These experimental conditions correspond to an insignificant effect of
condensation on the population density of levels [19], but at the same time, the deviations of the density and
translational temperature from their isentropic values due to the effect of relaxation processes and viscosity
in the nozzle [20] are also not large. The parameters @ and ¢ were adjusted so that @ = 3 and ¢ = 10, for which
the calculation and experiment agree satisfactorily, as is evident from Fig, 1, which shows the behavior of the
intensities of rotational lines Iy for odd levels with k' =3 to k' = 11. The dots in Fig, 1 indicate experimental
data (5 is for dy = 5.12 mm and 6 is for d« = 15 mm), while the lines indicate the computed values. Curve 1
shows the values of Iyr with a Boltzmann distribution in the X'Zv = 0 state with translational temperature Ty
curve 2 shows the theoretical calculation with rate constants given by Eq. (3.1), which in what follows we will
refer to as the two-quanta model of rotational relaxation. The same figure presents the computed data for the
first and second multiquantum models (curves 3 and 4, respectively). These models will be described below,

As a comparison, shown in Fig. 2 (the notation in Fig. 2 is the same as in Fig. 1), between calculations
and experiment shows, for x/d« =5 and Ty = 290°K with pydx > 8- 10° Pa. mm, the theoretical data on two-
quanta model are much closer to the values for equilibrium flow (in Fig, 2, they are shown by the horizontal
segments of the dashed lines) than experiment. In addition, this difference increases with increasing rotational
quantum number and can be ascribed to the effects of nonequilibrium condensation [19].

The disagreement between computed and experimental data is also observed for smaller values of P,
i.e., for conditions when the effects of condensation in the flow are insignificant, at least, for most of the ro-
tational levels. The disagreement indicated increases with increasing pgd«, since the calculation using the two-
quantum model predicts a slower relaxation rate for the process than is observed experimentally.

The problem of finding the rate constants from experimental data on the population densities of the
levels for the two-quanta transition model is a problem involving a number of unknown constants Kx+9,k equal
to the number of equations [Egs. {2.3)]. For this reason, the lack of correspondence between the calculation
using the two-quanta transition model and experiment demonstrated in Fig. 2, except for the experiment with
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podx = 8- 10° Pa+ mm, indicates the necessity of taking into account transitions with Ak > 2, This is also indi-
cated by quantum mechanical calculations of the cross sections of inelastic Ny + Ar collisions [21]. There is
as yet no information in the literature on the rate constants of rotational relaxation with N, + N, collisions,
while the system of kinetic equations (2.3) cannot be solved uniquely for the rate constants of multiquantum
transitions, as can be done for models involving two-quanta transitions,

Information theory was used to set the multiquantum rate constants {22]. The equations for the rate con-
stants were used in the same form as for the cross sections in this theory, In the notation of the paper cited,
the equation for calculating the deactivation constants has the form
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Here, c; is an adjustable factor, while E; = i(i + 1)®, The two-quanta transition constants were calculated using
Eq. (3.1) with @ = 3. The best agreement between theoretical and experimental data is obtained with ¢, = 4. In
Figs. 1 and 2, calculations according to this model of rotational relaxation (first multiquantum) are indicated

by the number 3. In contrast to the two-quanta transition model, this model describes the experimental data

in the range pyds = 10°-8-10° Pa- mm.

The same satisfactory description of the experiments was also obtained for another set of rate constants
for rotational relaxation, in particular, for deactivation constants, given in the form [23]
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with adjustable parameters B and c;. We will refer to this model as the second multiquantum model. By fitting,
the values B = 7.39-10!! cm®- sec™! and ¢, = 0.35 were obtained, for which the experimental data, presented
in Fig. 2 for ped < 8+10° Pa.mm, are described by this model just as well (curve 4) as by calculations using

the first multiquantum model. A similar description of the experiments is also obtained for other values of
x /dx.

Figure 3 gives the computed distributions of population densities of rotational levels for x/d« = 5 and
Ty = 300°K for different values of pydx in the coordinates In (Nk/ Nyp@2k + 1)) — k{k + 1), In these coordinates,
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the Boltzmann distribution with temperature Ty is a straight line with the tangent of the angle of inclination
equal to —@®/ Ty. The same figure shows the distributions corresponding to the equilibrium (pds = ) and
"frozen” (pdx = 0) flows. In Fig. 3, the population densities of the odd levels, in accordance with the statisti-
cal weights of ortho- and paramodifications, are increased by a factor of 2. It is evident that for all p,dx the
population densities of even and odd levels are described by single smooth functions of k(k + 1). The distribu-
tions evolve from equilibrium to "frozen" through a sequence of non-Boltzmann distributions, i.e,, distribu-
tions for which a rotational temperature cannot be introduced. This evolution of the distributions, which is
observed for any x /dy, is typical for experiments with free jets [3].

4. Relaxation of Rotational Levels. In order to solve a wide range of gasdynamic problems, instead of
detailed information contained in the molecular rotational distribution function, it is enough to know the relax-
ation characteristics of the rotational energy E, = > 0k(k + 1) Np. We will examine the problem of the appli-
cability of the relaxation equation k

dE, éE, B (T)—F, @.1)
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for describing the computed results for Ep obtained above. In Eq. (4.1), Ty i8 the relaxation time. Based on the
computed functions N (x) and, therefore, knowing the functions Er&), for each point x we computed the quan-
tity Ty from Eq. (4.1). The corresponding results are presented in Fig. 4 for 10 values of px and are denoted
by the numbers 1-10 for the set of rate constants (3.4) in the form of the functions nt4(Ty). The number 11
indicates the function m'%.(Tt), obtained directly from the system of Egs. (2.3) for the case of an infinitely
small difference between the translational and rotational temperatures (Ty— T =& — 0) by expanding the right
sides of Egs. (2.3) in powers of € and taking info account terms ~e. In this case, Eq. (4.1) with 7. = 7% can be
obtained for E,. A similar procedure for calculating 'r]lf was used previously in [24] for a two-quanta transition
model, As is evident from Fig. 4, for each value of Ty, there is an appreciable increase in the quantity n7, with
decreasing pdx, i.e., with an increase in the deviation from equilibrium between rotational and translational
degrees of freedom. This indicates that the quantity nry depends on the distribution of molecules over rota-
tional levels and, therefore, Eq. {4.1), strictly speaking, cannot describe Ey as accurately as the system of
kinetic equations (2.3). The nature of the dependence of n7y on the distribution of population densities is de-
termined by the set of rate constants for rotational relaxation and by the gasdynamic process. We note in this
connection that in [9] a special set of constants is indicated for which the equivalent relaxation time does not
depend on the distribution of molecules over rotational levels. However, in general, such a dependence exists
and, therefore, the relaxation equation (4.1) can be used for describing approximately the relaxation of rota-
tional energy only in a limited range of defining parameters (p¢d«, To, x /dx). The number 12 in Fig. 4 indi-
cates the dependence of the product of the gas density and the average time between collisions of molecules
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where 0g is given by Eq. (3.2). As is evident, in the temperature interval 10-100°K, the quantity z, = 7 /7¢
increases with increasing Ty from 2~3 at T = 100°K to 10-100 and higher at Tt = 10°K,

Figure 5 shows the results of measurements of E;, carried out using different methods: according to
the energy balance in the molecular beam [25-27], points 1, 2, and 4, respectively; electron beam in a molec-
ular beam [28], points 3, Point 6-8 indicate the results in [13]: 6) x/dx = 66.1, T = 290°K; 7) x/d« = 66.1,

T = 295°K; 8) x/dy = 38, T, = 295°K, The experimental data in general agree, although the electron heam
measurements give smaller values of Ey than the molecular beam measurements. The experimental results
[13] agree well with data in [28], where electron beam measurements were carried out in a molecular beam
separated out from the jet, i.e., for densities much lower than for measurements in a jet and, therefore, for
a smaller effect of secondary electrons. The agreement between the data on E, provides an additional basis,
to that presented in [13], for neglecting the effect of secondary electrons. Figure 5 also shows the computed
functions E;(pidx) at the point x /d« = 100 (the quantity E, in the range of pydx examined is "frozen" at distances
x/ds S 30-40). Curve 5 was obtained from a solution of the system of kinetic equations (2.3) with constants
(3.4); curve 9 is result of asolution of Eq. (4.1) with relaxation time Ti-. As can be seen, the kinetic calcula-
tion agrees satisfactorily with experiment, while the relaxation equation leads to results that are lower (by 20
to 30%).

The ambiguity of the rate constants for rotational relaxation, demonstrated above, found from the resulfs
of measurements of population densities of levels, has a fundamental significance, reflecting the improper
nature of the corresponding inverse problem. However, whatever the true values of the rate constants are,
the basic characteristics of rotational relaxation in a free jet of a molecular gas remain the same,

1. Supersonic expansion of a gas into a vacuum is accompanied by breakdown of the Boltzmann distribu-
tion of the rotational level population densities.

2. Multiquantum R—T transitions (Ak = 4, =6, and so on) play an important role in the kinetics of ro-
tational relaxation.

3. The relaxation time for rotational energy depends on the distribution of molecules over rotational
levels and, for this reason, the quantity zy obtained by analyzing the experiments within the scope of the re-
lagxation equation (4.1) is not a physical characteristic of the gas. This circumstance could be the reason for
the large spread in the values of 7, in the literature [26], even those obtained using the same method.
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